Add like
Add dislike
Add to saved papers

Overexpression of FAB1A-GFP recruits SNX2b on the endosome membrane in snx1-1 mutant in Arabidopsis.

Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is one of the phosphoinositides that controls endosomal trafficking events in eukaryotes. PtdIns(3,5)P2 is produced from PI(3)P by phosphatidylinositol 3-phosphate 5-kinase FAB1/PIKfyve. Recently, we reported that FAB1 predominantly localizes on the SNX1-residing late endosomes and a loss-of FAB1 function causes the release of late endosomal effector proteins, ARA7/RABF2b and SORTING NEXIN 1 from the endosome membrane, indicating that FAB1 or its product PtdIns(3,5)P2 mediates the maturation process of the late endosomes. Intriguingly, the ectopic expression of FAB1A could complement the sucrose-dependent seedling growth phenotype of snx1-1 mutant. Here, we demonstrated that the depletion of SNX1 causes the release of SNX2b-mRFP from the endosomal membrane. However, overexpression of FAB1A-GFP reassembles SNX2b-mRFP on the endosomal membrane despite the absence of SNX1. From these results, we proposed that SNX2b homodimer or SNX2a/SNX2b heterodimer might function as functional Sorting Nexin complex instead of SNX1 to attach the endosomal membrane by binding of overproduced PI(3,5)P2 in Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app