JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The change in motor unit firing rates at de-recruitment relative to recruitment is correlated with type I myosin heavy chain isoform content of the vastus lateralis in vivo.

AIM: To investigate the change in motor unit (MU) firing rates (FR) at de-recruitment relative to recruitment and the relation to % type I myosin heavy chain isoform content (type I %MHC) of the vastus lateralis (VL) in vivo.

METHODS: Ten subjects performed a 22-s submaximal isometric trapezoid muscle action that included a linearly increasing, steady force at 50% maximal voluntary contraction, and linearly decreasing segments. Surface electromyographic signals were collected from the VL and were decomposed into constituent MU action potentials trains. A tissue sample from the VL was taken to calculate type I %MHC. The y-intercepts and slopes were calculated for the changes (Δ) in FR at de-recruitment (FRDEREC ) relative to FR at recruitment (FRREC ) vs. FRREC relationship for each subject. Correlations were performed between the y-intercepts and slopes with type I %MHC.

RESULTS: The majority of MUs had greater FRDEREC than FRREC . The y-intercepts (r = -0.600, P = 0.067) were not significantly correlated, but the slopes (r = -0.793, P = 0.006) were significantly correlated with type I %MHC.

CONCLUSION: The majority of the motoneuron pool had greater FRDEREC than FRREC , however, individuals with higher type I %MHC had a greater propensity to have MUs with FRREC > FRDEREC as indicated by the slope values. Overall, the contractile properties of the muscle (MHC) could partially explain the differences in MU firing rates at de-recruitment relative to recruitment. Thus, suggesting the fatigability of the muscle influences the alterations in MU firing rates from recruitment to de-recruitment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app