Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Visualization of multimerization and self-assembly of DNA-functionalized gold nanoparticles using in-liquid transmission electron microscopy.

Base-pairing stability in DNA-gold nanoparticle (DNA-AuNP) multimers along with their dynamics under different electron beam intensities was investigated with in-liquid transmission electron microscopy (in-liquid TEM). Multimer formation was triggered by hybridization of DNA oligonucleotides to another DNA strand (Hyb-DNA) related to the concept of DNA origami. We analyzed the degree of multimer formation for a number of samples and a series of control samples to determine the specificity of the multimerization during the TEM imaging. DNA-AuNPs with Hyb-DNA showed an interactive motion and assembly into 1D structures once the electron beam intensity exceeds a threshold value. This behavior was in contrast with control studies with noncomplementary DNA linkers where statistically significantly reduced multimerization was observed and for suspensions of citrate-stabilized AuNPs without DNA, where we did not observe any significant motion or aggregation. These findings indicate that DNA base-pairing interactions are the driving force for multimerization and suggest a high stability of the DNA base pairing even under electron exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app