Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative effects of whey protein versus L-leucine on skeletal muscle protein synthesis and markers of ribosome biogenesis following resistance exercise.

Amino Acids 2016 March
We compared immediate post-exercise whey protein (WP, 500 mg) versus L-leucine (LEU, 54 mg) feedings on skeletal muscle protein synthesis (MPS) mechanisms and ribosome biogenesis markers 3 h following unilateral plantarflexor resistance exercise in male, Wistar rats (~250 g). Additionally, in vitro experiments were performed on differentiated C2C12 myotubes to compare nutrient (i.e., WP, LEU) and 'exercise-like' treatments (i.e., caffeine, hydrogen peroxide, and AICAR) on ribosome biogenesis markers. LEU and WP significantly increased phosphorylated-rpS6 (Ser235/236) in the exercised (EX) leg 2.4-fold (P < 0.01) and 2.7-fold (P < 0.001) compared to the non-EX leg, respectively, whereas vehicle-fed control (CTL) did not (+65 %, P > 0.05). Compared to the non-EX leg, MPS levels increased 32 % and 52 % in the EX leg of CTL (P < 0.01) and WP rats (P < 0.001), respectively, but not in LEU rats (+15 %, P > 0.05). Several genes associated with ribosome biogenesis robustly increased in the EX versus non-EX legs of all treatments; specifically, c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA, Npm1 mRNA, Fb1 mRNA, and Xpo-5 mRNA. However, only LEU significantly increased 45S pre-rRNA levels in the EX leg (63 %, P < 0.001). In vitro findings confirmed that 'exercise-like' treatments similarly altered markers of ribosome biogenesis, but only LEU increased 47S pre-rRNA levels (P < 0.01). Collectively, our data suggests that resistance exercise, as well as 'exercise-like' signals in vitro, acutely increase the expression of genes associated with ribosome biogenesis independent of nutrient provision. Moreover, while EX with or without WP appears superior for enhancing translational efficiency (i.e., increasing MPS per unit of RNA), LEU administration (or co-administration) may further enhance ribosome biogenesis over prolonged periods with resistance exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app