Add like
Add dislike
Add to saved papers

Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon.

Vacuum carbonization of organic precursors usually causes considerable structural damage and collapse of morphological features. However, for a polymer with intrinsic microporosity (PIM-EA-TB with a Brunauer-Emmet-Teller (BET) surface area of 1027 m(2)g(-1)), it is shown here that the rigidity of the molecular backbone is retained even during 500 °C vacuum carbonization, yielding a novel type of microporous heterocarbon (either as powder or as thin film membrane) with properties between those of a conducting polymer and those of a carbon. After carbonization, the scanning electron microscopy (SEM) morphology and the small-angle X-ray scattering (SAXS) Guinier radius remain largely unchanged as does the cumulative pore volume. However, the BET surface area is decreased to 242 m(2)g(-1), but microporosity is considerably increased. The new material is shown to exhibit noticeable electrochemical features including two pH-dependent capacitance domains switching from ca. 33 Fg(-1) (when oxidized) to ca. 147 Fg(-1) (when reduced), a low electron transfer reactivity toward oxygen and hydrogen peroxide, and a four-point-probe resistivity (dry) of approximately 40 MΩ/square for a 1-2 μm thick film.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app