Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms of Nicotinic Modulation of Glutamatergic Neuroplasticity in Humans.

Cerebral Cortex 2017 January 2
The impact of nicotine (NIC) on plasticity is thought to be primarily determined via calcium channel properties of nicotinic receptor subtypes, and glutamatergic plasticity is likewise calcium-dependent. Therefore glutamatergic plasticity is likely modulated by the impact of nicotinic receptor-dependent neuronal calcium influx. We tested this hypothesis for transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity, which is abolished by NIC in nonsmokers. To reduce calcium influx under NIC, we blocked N-methyl-d-aspartate (NMDA) receptors. We applied anodal tDCS combined with 15 mg NIC patches and the NMDA-receptor antagonist dextromethorphan (DMO) in 3 different doses (50, 100, and 150 mg) or placebo medication. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor-evoked potential amplitudes after plasticity induction. NIC abolished anodal tDCS-induced motor cortex excitability enhancement, which was restituted under medium dosage of DMO. Low-dosage DMO did not affect the impact of NIC on tDCS-induced plasticity and high-dosage DMO abolished plasticity. For DMO alone, the low dosage had no effect, but medium and high dosages abolished tDCS-induced plasticity. These results enhance our knowledge about the proposed calcium-dependent impact of NIC on plasticity in humans and might be relevant for the development of novel nicotinic treatments for cognitive dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app