Add like
Add dislike
Add to saved papers

Mago Nashi is involved in meristem organization, pollen formation, and seed development in Arabidopsis.

Mago Nashi (Mago) is involved in several processes related to mRNA physiology in animal cells, including mRNA export from the nucleus, cytoplasmic mRNA localization, non-sense mediated mRNA decay, and translation. These cellular roles are visible as defects in development when Mago gene expression is modified in mutant model animal systems. Mago gene orthologs exist in plants, however, their functional roles in growth and development have not been well studied. Using an RNA interference (RNAi) approach, we produced transgenic Arabidopsis plants that had reduced levels of AtMago mRNA. RNAi-AtMago plants were delayed in their overall development, produced a greater number of leaves, and possessed short and occasionally fasciated stems. The leaves were small in size and demonstrated enhanced curling along their length. Shoot meristems of RNAi-AtMago plants lacked the cellular organization of wildtype meristems. Shoot meristematic cells were extensively vacuolated and large intercellular spaces were evident. RNAi-AtMago plants produced short lateral roots that lacked normal cell profiles and demonstrated premature root hair differentiation. The arrangement of microspore tetrads in RNAi-AtMago plants was aberrant, and microspores were extensively vacuolated. Pollen production and pollen germination rates were also reduced. RNAi-AtMago plants occasionally produced aborted seeds, or demonstrated delayed seed development that resulted in non-viable seed. The range of developmental defects visible in RNAi-AtMago plants and the ubiquitous expression of AtMago indicates that Mago has essential functions in most, if not all plant cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app