Add like
Add dislike
Add to saved papers

Genome-wide analysis of thapsigargin-induced microRNAs and their targets in NIH3T3 cells.

Genomics Data 2014 December
Disruption of the endoplasmic reticulum (ER) homeostasis is the cause of ER stress. We performed microRNA (miRNA) analysis (deep sequencing) to search for coping responses (including signaling pathways) induced by disrupted ER Ca(2 +) homeostasis. Our focus was on a specific branch of UPR namely the bi-functional protein kinase/endoribonuclease inositol-requiring element 1α (IRE1α). Activated IRE1α undergoes autophosphorylation and oligomerization, leading to the activation of the endoribonuclease domain and splicing of the mRNA encoding XBP1 specific transcription factor. This processing changes the coding reading frame, producing a potent transcription factor termed XBP1s. We utilized the XBP1 splicing luciferase reporter to screen for modulators of the IRE1α branch of the unfolded protein response (UPR). Here, we describe a detailed experimental design and bioinformatics analysis of ER Ca(2 +) depletion (thapsigargin treated)-induced microRNA (deep sequencing) profile. The data can be access at the Gene Expression Omnibus (GEO), the National Center for Biotechnology Information (NCBI), reference number GSE57138.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app