Add like
Add dislike
Add to saved papers

Hypermethylation of the VTRNA1-3 Promoter is Associated with Poor Outcome in Lower Risk Myelodysplastic Syndrome Patients.

Genes 2015 October 15
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic disorders. MDS is frequently associated with deletions on chromosome 5q as well as aberrant DNA methylation patterns including hypermethylation of key tumor suppressors. We have previously shown that hypermethylation and silencing of the non-coding RNA VTRNA2-1 are correlated with poor outcomes in acute myeloid leukemia patients. In this study, we find that VTRNA1-2 and VTRNA1-3, both located on chromosome 5q, can be regulated and silenced by promoter DNA methylation, and that the hypomethylating agent 5-aza-2-deoxycytidine causes reactivation these genes. In normal hematopoiesis, we find that vault RNAs (vtRNAs) show differential methylation between various hematopoietic cell populations, indicating that allele-specific methylation events may occur during hematopoiesis. In addition, we show that VTRNA1-3 promoter hypermethylation is frequent in lower risk MDS patients and is associated with a decreased overall survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app