Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multi-Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation.

Artificial Organs 2015 October
Interest in transcutaneous electrical stimulation of the lumbosacral spinal cord is increasing in human electrophysiological and clinical studies. The stimulation effects on lower limb muscles depend on the depolarization of segmentally organized posterior root afferents and, thus, the rostro-caudal stimulation site. In previous studies, selective stimulation was achieved by varying the positions of single self-adhesive electrodes over the thoracolumbar spine. Here, we developed a multi-electrode surface array consisting of 3 × 8 electrode pads and tested its stimulation-site specificity. The array was placed longitudinally over the spine covering the T10-L2 vertebrae. Two different hydrogel layer configurations were utilized: a single layer adhered to all electrode pads of the array and a configuration comprised of eight separate strips attached to the three transverse electrode pads of each level. Voltage measurements demonstrated that an effectively focused field distribution along the longitudinal extent of the array was not accomplished when using the single continuous hydrogel layer, and segmental selective stimulation of the posterior root afferents was not possible. The separate strips produced a focused electric field distribution at the rostro-caudal level of the electrode pads selected for stimulation. This configuration allowed for the preferential elicitation of posterior root-muscle reflexes in either the L2-L4 innervated quadriceps or the L5-S2 innervated triceps surae muscle groups. Such multi-electrode array for transcutaneous spinal cord stimulation shall allow for improved control of stimulation conditions in electrophysiological studies and time-dependent and site-specific stimulation patterns for neuromodulation applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app