JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Diseases caused by mutations in ORAI1 and STIM1.

Ca(2+) release-activated Ca(2+) (CRAC) channels mediate a specific form of Ca(2+) influx called store-operated Ca(2+) entry (SOCE) that contributes to the function of many cell types. CRAC channels are composed of ORAI1 proteins located in the plasma membrane, which form its ion-conducting pore. ORAI1 channels are activated by stromal interaction molecule (STIM) 1 and STIM2 located in the endoplasmic reticulum. Loss- and gain-of-function gene mutations in ORAI1 and STIM1 in human patients cause distinct disease syndromes. CRAC channelopathy is caused by loss-of-function mutations in ORAI1 and STIM1 that abolish CRAC channel function and SOCE; it is characterized by severe combined immunodeficiency (SCID)-like disease, autoimmunity, muscular hypotonia, and ectodermal dysplasia, with defects in sweat gland function and dental enamel formation. The latter defect emphasizes an important role of CRAC channels in tooth development. By contrast, autosomal dominant gain-of-function mutations in ORAI1 and STIM1 result in constitutive CRAC channel activation, SOCE, and increased intracellular Ca(2+) levels that are associated with an overlapping spectrum of diseases, including nonsyndromic tubular aggregate myopathy (TAM) and York platelet and Stormorken syndromes. The latter two syndromes are defined, besides myopathy, by thrombocytopenia, thrombopathy, and bleeding diathesis. The fact that myopathy results from both loss- and gain-of-function mutations in ORAI1 and STIM1 highlights the importance of CRAC channels for Ca(2+) homeostasis in skeletal muscle function. The cellular dysfunction and clinical disease spectrum observed in mutant patients provide important information about the molecular regulation of ORAI1 and STIM1 proteins and the role of CRAC channels in human physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app