Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

OX40 and 4-1BB downregulate Kaposi’s sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells.

Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the human gammaherpesvirus subfamily and is associated with malignancies of endothelial origin (Kaposi’s sarcoma, KS) and B-cell origin [primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD)]. Viral lytic replication is known to be required for KS and MCD. As KSHV-related tumours mostly develop in human subjects when the immune system is compromised by immunosuppressive regimen, human immunodeficiency virus infection or some genetic deficiencies, KSHV-specific immune responses are believed to be important in the control of KSHV replication. However, analysis of the roles of immune cells in viral pathogenesis has been difficult due to the lack of an adequate animal model. Recently, congenital OX40 deficiency, as determined by genome-wide exome sequencing, was shown to be associated with aggressive childhood KS in a patient, suggesting that disrupted OX40–OX40L interactions might be implicated in disease development. Here, we report that interaction of recombinant OX40 protein with OX40L expressed on endothelial cells severely impaired KSHV lytic replication. Furthermore, 4-1BB–4-1BBL interactions were also capable of efficiently inhibiting viral replication in B-cells and endothelial cells. To the best of our knowledge, this is the first direct evidence that ligation of tumour necrosis factor superfamily members and their cognate receptors is important for the control of viral lytic replication. These data are likely to pave the way for the development of KSHV-specific therapies for KS and MCD, in which viral lytic replication is a disease-determining factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app