Add like
Add dislike
Add to saved papers

Cytotoxicity Evaluation and Crystallochemical Analysis of a Novel and Commercially Available Bone Substitute Material.

BACKGROUND: Alloplastic biomaterials are an alternative for autologous transplants and xenografts in oral surgery and dental implantology. These non-immunogenic and resorbable materials are becoming the basis for complete and predictable guided bone regeneration in many cases. The chemical composition of a great majority of them is based on calcium phosphate salts. In vivo performance is often variable.

OBJECTIVES: The objective was to evaluate the biological and chemical properties of an experimental bone substitute material.

MATERIAL AND METHODS: The present research focuses on the cytotoxicity comparison and physiochemical characterization of two biomaterials: a novel chitosan/tricalcium phosphate/alginate composite (CH/TCP/Ag) and a commercially available synthetic bone graft made of HA (60%) and βTCP (40%) (HA/TCP). The materials were evaluated according to PN-EN ISO 10993 Biological evaluation of medical devices i.e. cytotoxicity on mouse fibroblasts (L929) and, in addition, tests on human osteoblasts (hFOB1.19) and human osteosarcoma (MG-63) were conducted. The crystallochemical analysis was performed using the X-ray powder diffraction method. The Bruker-AXS D8 Advance diffractometer (Karlsruhe, Germany) was used to collect diffractograms.

RESULTS: The tested materials showed a close resemblance in chemical composition and a considerable differentiation in cytotoxic response.

CONCLUSIONS: The novel composite demonstrated a high degree of cytocompatibility, which is promising in future clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app