Add like
Add dislike
Add to saved papers

Effects of pressure and distortion on superconductivity in Tl₂Ba₂CaCu₂O(8+δ).

The systematic evolution of the structural, vibrational, and superconducting properties of nearly optimally doped Tl2Ba2CaCu2O(8+δ) with pressure up to 30 GPa is studied by x-ray diffraction, Raman scattering, and magnetic susceptibility measurements. No phase transformation is observed in the studied pressure regime. The obtained lattice parameters and unit-cell volume continuously decrease with pressure by following the expected equation of state. The axial ratio of c/a exhibits an anomaly starting from 9 GPa. At such a pressure level, the deviation from the nonlinear variation of the phonon frequencies is detected. Both the above observations indicate the enhancement of the distortion upon compression. The superconducting transition temperature is found to exhibit a parabolic behavior with a maximum of 114 K around 7 GPa. We demonstrate that the interplay between the intrinsic pressure variables and distortion controls the superconductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app