Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.

Gene 2016 January 16
Cold adapted enzymes have applications in detergent, textile, food, bioremediation and biotechnology processes. Bacillus lipases are 'generally recognized as safe' (GRAS) and hence are industrially attractive. Bacillus lipase of 1.4 subfamily are of lowest molecular weight and are reversibly unfolded due to absence of disulphide bonds. Therefore these are largely used to study energetic of protein stability that represents unfolding of native protein to fully unfolded state. In present study, metagenomically isolated Bacillus LipJ was laboratory evolved for cold adaptation by error Prone PCR. Library of variants were screened for high relative activity at low temperature of 10°C compared to native protein LipJ. Point mutant sequenced as Phe19→Leu was determined to be active at cold and was selected for extensive biochemical, biophysical characterization. Variant F19L showed its maximum activity at 10°C where parent protein LipJ had 20% relative activity. Psychrophilic nature of F19L was established with about 50% relative active at 5°C where native protein was frozen to act. Variant F19L showed no activity at temperature 40°C and above, establishing its thermolabile nature. Thermostability studies determined mutant to be unstable above 20°C and three fold decrease in its half life at 30°C compared to native protein. Far UV-CD and intrinsic fluorescence study demonstrated unstable tertiary structure of point variant F19L leading to its unfolding at low temperature of 20°C. Cold adaptation of mutant F19L is accompanied with increased specific activity. Mutant was catalytically more efficient with 1.3 fold increase in kcat. Homologue structure modelling predicted disruption of intersecondary hydrophobic core formed by aromatic ring of Phe19 with non polar residues placed at β3, β4, β5, β6, αF. Increased local flexibility of variant F19L explains molecular basis of its psychrophilic nature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app