JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice.

Immunology 2016 January
Our objective was to determine the role of the inflammatory cytokine interleukin-23 (IL-23) in promoting neutrophil recruitment, inflammatory cytokine expression and intestinal histopathology in response to Clostridium difficile infection. Wild-type (WT) and p19(-/-) (IL-23KO) mice were pre-treated with cefoperazone in their drinking water for 5 days, and after a 2-day recovery period were challenged with spores from C. difficile strain VPI 10463. Interleukin-23 deficiency was associated with significant defects in both the recruitment of CD11b(High) Ly6G(H) (igh) neutrophils to the colon and the expression of neutrophil chemoattractants and stabilization factors including Cxcl1, Cxcl2, Ccl3 and Csf3 within the colonic mucosa as compared with WT animals. Furthermore, the expression of inflammatory cytokines including Il33, Tnf and Il6 was significantly reduced in IL-23-deficient animals. There was also a trend towards less severe colonic histopathology in the absence of IL-23. The induction of Il17a and Il22 was also significantly abrogated in IL-23KO mice. Inflammatory cytokine expression and neutrophilic inflammation were not reduced in IL-17a-deficient mice or in mice treated with anti-IL-22 depleting monoclonal antibody. However, induction of RegIIIg was significantly reduced in animals treated with anti-IL-22 antibody. Taken together, these data indicate that IL-23, but not IL-17a or IL-22, promotes neutrophil recruitment and inflammatory cytokine and chemokine expression in the colon in response to C. difficile infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app