JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blockade of metabotropic glutamate receptor 5 protects against DNA damage in a rotenone-induced Parkinson's disease model.

Glutamate excitotoxicity contributes to the development of Parkinson's disease (PD) and pharmacological blockade of metabotropic glutamate receptor 5 (mGluR5) has beneficial anti-akinetic effects in animal models of PD; however, the mechanism by which these antagonists alleviate PD symptoms is largely unknown. In our study, the effects of mGluR5 inhibition on DNA damage were investigated in a rotenone-induced model of PD. We first found that the selective mGluR5 antagonist, 2-methyl-6- (phenylethynyl) pyridine, prevented rotenone-induced DNA damage in MN9D dopaminergic neurons through a mechanism involving the downregulation of intracellular calcium release which was associated with a reduction in endoplasmic reticulum stress and reactive oxygen species (ROS)-related mitochondrial dysfunction. Interestingly, the ROS-related mitochondrial dysfunction was accompanied by an increase in expression of the antioxidant protein, Trx2. Treatment of cells with the calcium chelating agent 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or the ROS scavenger N-acetyl-L-cysteine, also reduced rotenone-induced DNA damage, while transfection of a dominant-negative form of Trx2 increased it. In addition, mGluR5 inhibition altered the expression profiles of proteins involved in DNA repair activity. Specifically, the expression of phosphorylated ERK (p-ERK) and CREB, as well as APE1 and Rad51 were elevated after rotenone stimulation and were subsequently downregulated following blockade of mGluR5. These findings were confirmed in vivo in a rotenone-induced rat model of PD. Inhibition of mGluR5 protected against neurotoxicity by mitigating oxidative stress-related DNA damage associated with 8-hydroxy-2'-deoxyguanosine production and also reduced p-ERK activity and Trx2 expression. These findings provide a novel link between mGluR5 and DNA damage in a model of PD, and reveal a potential mechanism by which mGluR5 mediates DNA damage in neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app