JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Chloroperoxidase-Catalyzed Epoxidation of Cis-β-Methylstyrene: NH-S Hydrogen Bonds and Proximal Helix Dipole Change the Catalytic Mechanism and Significantly Lower the Reaction Barrier.

Proximal hydrogen bonding of the axial sulfur with the backbone amides (NH-S) is a conserved feature of heme-thiolate enzymes such as chloroperoxidase (CPO) and cytochrome P450 (P450). In CPO, the effect of NH-S bonds is amplified by the dipole moment of the proximal helix. Our gas-phase DFT studies show that the proximal pocket effect significantly enhances CPO's reactivity toward the epoxidation of olefinic substrates. Comparison of models with and without proximal pocket residues shows that with them, the barrier for Cβ-O bond formation is lowered by about ∼4.6 kcal/mol, while Cα-O-Cβ ring closure becomes barrierless. The dipole moment of the proximal helix was estimated to contribute 1/3 of the decrease, while the rest is attributed to the effect of NH-S bonds. The decrease of the reaction barrier correlates with increased electron density transfer to residues of the proximal pocket. The effect is most pronounced on the doublet spin surface and involves a change in the electron-transfer mechanism. A full enzyme QMMM study on the doublet spin surface gives about the same barrier as the gas-phase DFT study. The free-energy barrier was estimated to be in agreement with the experimental results for the CPO-catalyzed epoxidation of styrene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app