Add like
Add dislike
Add to saved papers

Assessment of cartilage contact pressure and loading in the hip joint during split posture.

PURPOSE: Given the crucial role of the mechanical behavior in the degenerative process of the hip joint, analyzing the contact mechanics in the articular layers during physical activities could contribute to understanding the pathology. Indeed, the development process of hip osteoarthritis generally evolves over a long time period, and therefore analyzing the mechanical behavior of the hip joint during extreme repetitive movements will be helpful to analyze degeneration causes. The aim of the study was to investigate the link between the excessive movements and the development of hip osteoarthritis.

METHODS: To individualize the analysis, we used a subject-specific and noninvasive approach based on finite element analysis and magnetic resonance imaging (MRI) data. The contact pressure distribution and loading conditions on the acetabular cartilage were assessed on eleven professional dancer subjects performing a split movement. This movement is frequently practiced (repetitive) by dancers during their daily exercises. Moreover, split postures are mostly characterized by high anatomical angles with subluxation (excessive). To ensure the motion accuracy, MRI data of the subjects were acquired in neutral and split positions performed inside the MRI scanner. Based on the reconstructed bone models from the MRI data, a motion tracking approach was used to compute the transformation between the two poses. To evaluate the contact during the split movement and to quantify the role of the labrum in the hip joint mechanics, additional simulations of two daily activities (walking and stand-up) were performed. Finally, a clinical study based on morphological and radiological analysis of the subjects was performed and validated by orthopedic surgeons and radiological experts to evaluate the proposed approach.

RESULTS: The reconstructed split movement was characterized by high anatomical angles with a subluxation on the left hip. Consequently, strong deformations and pressures were observed during the simulation. The comparison of the simulation results of split posture and daily activities showed higher pressure and lower contact area during extreme movements. Moreover, the presence of labrum absorbed part of load and consequently decreased the predicted contact pressure and contact area on the acetabular cartilage.

CONCLUSION: The comparison of the simulation results of the split posture and daily activities, as well as the correlation between the results of the analysis on extreme movement results and the clinical analysis performed by medical experts, strongly suggests that repetitive extreme movement could lead to early hip osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app