JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of brainstem serotonin in analgesia produced by low-intensity exercise on neuropathic pain after sciatic nerve injury in mice.

Pain 2015 December
Physical exercise is a low-cost, safe, and efficient intervention for the reduction of neuropathic chronic pain in humans. However, the underlying mechanisms for how exercise reduces neuropathic pain are not yet well understood. Central monoaminergic systems play a critical role in endogenous analgesia leading us to hypothesize that the analgesic effect of low-intensity exercise occurs through activation of monoaminergic neurotransmission in descending inhibitory systems. To test this hypothesis, we induced peripheral nerve injury (PNI) by crushing the sciatic nerve. The exercise intervention consisted of low-intensity treadmill running for 2 weeks immediately after injury. Animals with PNI showed an increase in pain-like behaviors that were reduced by treadmill running. Reduction of serotonin (5-hydroxytryptamine) synthesis using the tryptophan hydroxylase inhibitor para-chlorophenylalanine methyl ester prevented the analgesic effect of exercise. However, blockade catecholamine synthesis with the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine had no effect. In parallel, 2 weeks of exercise increased brainstem levels of the 5-HT and its metabolites (5-hydroxyindoleacetic acid), decreased expression of the serotonin transporter, and increased expression of 5-HT receptors (5HT-1B, 2A, 2C). Finally, PNI-induced increase in inflammatory cytokines, tumor necrosis factor-alpha, and interleukin-1 beta, in the brainstem, was reversed by 2 weeks of exercise. These findings provide new evidence indicating that low-intensity aerobic treadmill exercise suppresses pain-like behaviors in animals with neuropathic pain by enhancing brainstem 5-HT neurotransmission. These data provide a rationale for the analgesia produced by exercise to provide an alternative approach to the treatment of chronic neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app