Add like
Add dislike
Add to saved papers

On the HCN - HNC Energy Difference.

The value for the HCN → HNC 0 K isomerization energy has been investigated by combining state-of-the-art electronic structure methods with the Active Thermochemical Tables (ATcT) approach. The directly computed energy difference between HCN and HNC at the HEAT-456QP level of theory is 5236 ± 50 cm(-1). This is substantially lower (by ∼470 cm(-1) or ∼1.3 kcal/mol) than the recently proposed high-level multireference configuration interaction value of 5705 ± 20 cm(-1) of Barber et al. ( Mon. Not. R. Astron. Soc. 2014, 437, 1828-1835 ). The discrepancy was analyzed by the ATcT approach, using several distinct steps, which (a) independently corroborated the current single-reference HEAT-456QP result, (b) independently found that the recent multireference-based value is highly unlikely to be correct within its originally stated uncertainty, and (c) produced a recommended value of 5212 ± 30 cm(-1) for the HCN → HNC isomerization energy at 0 K, based on all currently available knowledge. The ATcT standard enthalpies of formation at 0 and 298 K for HCN, HNC, and their cations and anions are also presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app