JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration.

The objectives of the present study were to produce bioactive coatings in solutions containing Ca, P, and Si by plasma electrolytic oxidation (PEO) on commercially pure titanium, to investigate the influence of different electrolytes concentration and treatment duration on the produced anodic films and to evaluate biocompatibility properties. The anodic films were characterized using scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy, and x-ray diffraction and x-ray photoelectron spectroscopies. The surface energy and roughness were also evaluated. PEO process parameters influenced the crystalline structure formation and surface topography of the anodic films. Higher Ca content produced larger porous (volcanolike appearance) and thicker oxide layers when compared to the lower content. Treatment duration did not produce any topography difference. The treatment modified the surface chemistry, producing an enriched oxide layer with bioactive elements in the form of phosphate compounds, which may be responsible for mimicking bone surface. In addition, a rough surface with increased surface energy was generated. Optimal spreading and proliferation of human mesenchymal stem cells was achieved by PEO treatment, demonstrating excellent biocompatibility of the surface. The main finding is that the biofunctionalization with higher Ca/P on Ti-surface can improve surface features, potentially considered as a candidate for dental implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app