JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures.

Scanning 2016 July
Apigenin has shown to have killing effects on some kinds of solid tumor cells. However, the changes in cell membrane induced by apigenin on subcellular- or nanometer-level were still unclear. In this work, human esophageal cancer cells (EC9706 and KYSE150 cells) were employed as cell model to detect the cytotoxicity of apigenin, including cell growth inhibition, apoptosis induction, membrane toxicity, etc. MTT assay showed that apigenin could remarkably inhibit the growth and proliferation in both types of cells. Annexin V/PI-based flow cytometry analysis showed that the cytotoxic effects of apigenin in KYSE150 cells were mainly through early apoptosis induction, while in EC9706 cells, necrosis, and apoptosis were both involved in cell death. The morphological and ultrastructural properties induced by apigenin were investigated at single cellular- or nanometer-level using atomic force microscopy (AFM). Additionally, lactate dehydrogenase (LDH) leakage was measured to assess the changes in membrane permeability. The results indicated that apigenin increased the membrane permeability and caused leakage of LDH, which was consistent with damages on membrane ultrastructure detected by AFM. Therefore, membrane toxicity, including membrane ultrastructure damages and enhanced membrane permeability, played vital roles in apigenin induced human esophageal cancer cell apoptosis. SCANNING 38:322-328, 2016. © 2015 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app