Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Models of hypoxia and ischemia-induced seizures.

Despite greater understanding and improved management, seizures continue to be a major problem in childhood. Neonatal seizures are often refractory to conventional antiepileptic drugs, and can result in later life epilepsy and cognitive deficits, conditions for which there are no specific treatments. Hypoxic and/or ischemic encephalopathy (HIE) is the most common cause for neonatal seizures, and accounts for more than two-thirds of neonatal seizure cases. A better understanding of the cellular and molecular mechanisms is essential for identifying new therapeutic strategies that control the neonatal seizures and its cognitive consequences. This heavily relies on animal models that play a critical role in discovering novel mechanisms underlying both epileptogenesis and associated cognitive impairments. To date, a number of animal models have provided a tremendous amount of information regarding the pathophysiology of HIE-induced neonatal seizures. This review provides an overview on the most important features of the main animal models of HIE-induced seizures. In particular, we focus on the methodology of seizure induction and the characterizations of post-HIE injury consequences. These aspects of HIE-induced seizure models are discussed in the light of the suitability of these models in studying human HIE-induced seizures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app