Journal Article
Review
Add like
Add dislike
Add to saved papers

Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease).

There is increasing evidence that mitochondrial functions are secondarily disturbed in bulbospinal muscular atrophy (BSMA). This review focuses on the relation between BSMA and the effect of the expanded polyglutamine (poly-Q) androgen receptor (AR) on mitochondrial functions. Mitochondrial functions in bulbospinal muscular atrophy (SBMA) are affected on the molecular, clinical, and therapeutic level. On the molecular level there is down-regulation of various nuclear-DNA-encoded mitochondrial proteins by mutant androgen receptor (mAR), colocalization of the mAR with various mitochondrial proteins, association of mAR aggregates with mitochondria resulting in abnormal distribution of mitochondria, mtDNA depletion or multiple mtDNA deletions, mitochondrial membrane depolarization, increase in reactive oxidative species, and activation of the mitochondrial caspase pathway. On the clinical level various mitochondrial disorders mimic SBMA, and on the therapeutic level pioglitazone expresses PPAR-γ, cyclosporine-A restores mitochondrial membrane potentials, coenzyme-Q and idebenone reduce oxidative stress, and geldanamycin up-regulates protective mitochondrial heat shock proteins. In conclusion, in BSMA mitochondrial dysfunction results from various interactions of elongated poly-Q AR with mitochondria, mitochondrial proteins, nuclear or mitochondrial DNA, causing oxidative stress, decreased mitochondrial membrane potential, or activation of the mitochondrial caspase pathway. Additionally, mitochondrial disease may mimic BSMA and therapeutic approaches may depend on modifications of mitochondrial pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app