JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Melatonin attenuates (-)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice.

(-)-Epigallocatehin-3-gallate (EGCG), a major constituent of green tea, can ameliorate metabolic syndrome at least in part through reducing gluconeogenesis and lipogenesis. Green tea extracts, of which EGCG is a key constituent, have been used for weight loss in humans. A potential adverse effect of high-dose EGCG or green tea extracts is hepatotoxicity. Melatonin, an endogenous antioxidant with a high safety profile, is effective in preventing various types of tissue damage. The current study investigated the influence of melatonin on EGCG-triggered hepatotoxicity and EGCG-downregulated hepatic genes responsible for gluconeogenesis and lipogenesis in mice. We found that (i) melatonin extended survival time of mice intoxicated with lethal doses of EGCG; (ii) melatonin ameliorated acute liver damage and associated hepatic Nrf2 suppression caused by a nonlethal toxic dose of EGCG; (iii) melatonin reduced subacute liver injury and hepatic Nrf2 activation caused by lower toxic doses of EGCG; and (iv) melatonin did not compromise the action of pharmacological doses of EGCG in downregulating a battery of hepatic genes responsible for gluconeogenesis and lipogenesis, including G6Pc, PEPCK, FOXO1α, SCD1, Fasn, leptin, ACCα, ACCβ, GAPT, and Srebp-1. Taken together, these results suggest that the combination of EGCG and melatonin is an effective approach for preventing potential adverse effects of EGCG as a dietary supplement for metabolic syndrome alleviation and body weight reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app