JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain.

Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5'-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app