JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chronic ethanol consumption induces erectile dysfunction: Role of oxidative stress.

Life Sciences 2015 November 16
AIMS: Investigate the effects of chronic ethanol consumption on erectile function and on the corpus cavernosum (CC) reactivity to endothelin-1 (ET-1).

MAIN METHODS: Male Wistar rats were treated with ethanol (20% v/v) for six weeks.

KEY FINDINGS: Ethanol-treated rats showed impaired erectile function represented by decreased intracavernosal pressure/mean arterial pressure (ICP/MAP) responses. Ethanol consumption increased the contractile response induced by ET-1 in the isolated CC. Tiron increased ET-1-induced contraction in CC from control and ethanol-treated rats. No differences in the maximal contraction to ET-1 were observed after incubation of CC with PEG-catalase. SC560 and SC236 increased ET-1-induced contraction in CC from ethanol-treated rats. Y27632 reduced the contraction induced by ET-1 in CC from control and ethanol-treated rats. Ethanol increased plasma TBARS, superoxide anion (O2(-)) levels and intracellular reactive oxygen species (ROS) generation in the rat CC. Reduced hydrogen peroxide (H2O2) levels in CC and increased catalase (CAT) activity in plasma and CC were detected after treatment with ethanol. Ethanol decreased superoxide dismutase (SOD) activity in the rat CC. Increased expression of COX-1 was observed in CC from ethanol-treated rats. Treatment with ethanol decreased COX-2 expression but did not alter the expression of Nox1, RhoA and p-RhoA (ser(188)) in the rat CC.

SIGNIFICANCE: The major new findings of our study are that ethanol consumption induces erectile dysfunction (ED) and increases the contraction induced by ET-1 in the rat CC by a mechanism that involves decreased generation of H2O2 and vasodilator prostanoids as well as increased activation of the RhoA/Rho-kinase pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app