Add like
Add dislike
Add to saved papers

SegEM: Efficient Image Analysis for High-Resolution Connectomics.

Neuron 2015 September 24
Progress in electron microscopy-based high-resolution connectomics is limited by data analysis throughput. Here, we present SegEM, a toolset for efficient semi-automated analysis of large-scale fully stained 3D-EM datasets for the reconstruction of neuronal circuits. By combining skeleton reconstructions of neurons with automated volume segmentations, SegEM allows the reconstruction of neuronal circuits at a work hour consumption rate of about 100-fold less than manual analysis and about 10-fold less than existing segmentation tools. SegEM provides a robust classifier selection procedure for finding the best automated image classifier for different types of nerve tissue. We applied these methods to a volume of 44 × 60 × 141 μm(3) SBEM data from mouse retina and a volume of 93 × 60 × 93 μm(3) from mouse cortex, and performed exemplary synaptic circuit reconstruction. SegEM resolves the tradeoff between synapse detection and semi-automated reconstruction performance in high-resolution connectomics and makes efficient circuit reconstruction in fully-stained EM datasets a ready-to-use technique for neuroscience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app