JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induced pluripotent stem cells alleviate lung injury from mesenteric ischemia-reperfusion.

BACKGROUND: Mesenteric ischemia-reperfusion (I/R) injury is a serious pathophysiologic process that can trigger the development of multiorgan dysfunction. Acute lung injury is a major cause of death among mesenteric I/R patients, as current treatments remain inadequate. Stem cell-based therapies are considered novel strategies for treating several devastating and incurable diseases. This study examined whether induced pluripotent stem cells (iPSCs) lacking c-myc (i.e., induced using only the three genes oct4, sox2, and klf4) can protect against acute lung injury in a mesenteric I/R mouse model.

METHODS: C57BL/6 mice were randomly divided into the following groups: sham/no treatment, vehicle treatment with phosphate-buffered saline, treatment with iPSCs, and treatment with iPSC-conditioned medium. The mice were subjected to mesenteric ischemia for 45 minutes followed by reperfusion for 24 hours. After I/R, the lungs and the ileum of the mice were harvested. Lung injury was evaluated by histology, immunohistochemistry, and analyses of the levels of inflammatory cytokines, cleaved caspase 3, and 4-hydroxynonenal.

RESULTS: The intravenously delivered iPSCs engrafted to the lungs and the ileum in response to mesenteric I/R injury. Compared with the phosphate-buffered saline-treated group, the iPSC-treated group displayed a decreased intensity of acute lung injury 24 hours after mesenteric I/R. iPSC transplantation significantly reduced the expression of proinflammatory cytokines, oxidative stress markers, and apoptotic factors in injured lung tissue and remarkably enhanced endogenous alveolar cell proliferation. iPSC-conditioned medium treatment exerted a partial effect compared with iPSC treatment.

CONCLUSION: When considering the anti-inflammatory, antioxidant, and antiapoptotic properties of iPSCs, the transplantation of iPSCs may represent an effective treatment option for mesenteric I/R-induced acute lung injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app