Add like
Add dislike
Add to saved papers

Oxidative Stress and Total Antioxidant Status During Internal Carotid Artery Clamping with or without Shunting: An Experimental Pilot Study.

BACKGROUND The exact role of shunting during carotid endarterectomy remains controversial and unclear. The aim of this experimental study was to investigate to what degree carotid clamping may induce changes in the cerebral oxidative status and to focus on the relation of these changes with shunt insertion. MATERIAL AND METHODS Forty New-Zealand rabbits were randomized into 4 groups: group 1 classifying animals with carotid shunt and patent contralateral carotid artery; group 2 shunt and occlusion of the contralateral carotid artery; group 3 no-shunt and patent contralateral carotid artery; and group 4 no-shunt and occlusion of the contralateral carotid artery. Blood samples were collected from the ipsilateral internal jugular vein, immediately after carotid clamping (time 0), and then at 5, 10, 15, 30, and 60 minutes afterwards. Evaluation of oxidative stress was accomplished by measuring the lag-time, representing the initial phase of oxidation, rate of accumulation (RA), showing concentration of free oxygen radical and total antioxidant status (TAS) representing antioxidant composition of serum. RESULTS Lag-time was significantly different in time points 0, 30 and 60 minutes within each different group. TAS was significantly different in time points 0, 15 and 60 min and RA in time points 0, 5, 10 and 60 min within each different group. 60 minutes after carotid clamping, the rate of accumulation as well as lag-time and TAS were increased in all groups, independently of using or not shunting or the presence of contralateral occlusion. After comparing groups 1, 2 and 3 regarding lag-time, TAS and RA, we did not find statistical difference among the groups at any time point. On the contrary, groups 1, 2 and 3 did show significantly different values comparing to group 4 after 60 min of occlusion. CONCLUSIONS Our experimental work based on cerebral metabolism found a significantly higher oxidative stress in models with contralateral carotid occlusion. The use of shunt in all other models did not have any influence on oxidative response. Future human studies should focus on the relation of oxidative status and shunt insertion to determine the benefit of selective or routine shunting during CEA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app