Add like
Add dislike
Add to saved papers

Preparation of Halogenated Fluorescent Diaminophenazine Building Blocks.

A short, convenient, and scalable protocol for the one-pot synthesis of a series of fluorescent 7,8-dihalo-2,3-diaminophenazines is introduced. The synthetic route is based on the oxidative condensation of 4,5-dihalo-1,2-diaminobenzenes in aqueous conditions. The resulting diaminophenazines could be attractive intermediates for the preparation of polyfunctional phenazines and extended polyheteroacenes. We find that the undesired hydroxylation byproducts, typically obtained in aqueous conditions, are completely suppressed by addition of a stoichiometric amount of acetone during the oxidation step allowing for selective formation of 7,8-dihalo-2,2-dimethyl-2,3-dihydro-1H-imidazo[4,5-b]phenazine derivatives with good to excellent yields. Under reductive conditions, the imidazolidine ring can be hydrolyzed into the desired 7,8-dihalo-2,3-diaminophenazines. Furthermore, we report a selective route under highly reducing conditions to monohydrodeaminate the 2,3-di(methylamino) phenazine derivatives, which allows for further structural variations of these phenazine building blocks. All of these derivatives are luminescent, with measured fluorescence quantum-yields of up to 80% in ethanol for the more rigid structures, highlighting the potential of such materials to provide new fluorophores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app