Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular characterization, origin, and evolution of teleost p68 gene family: Insights from Japanese flounder, Paralichthys olivaceus.

Marine Genomics 2015 December
Two rounds of whole-genome duplication occurred in the common ancestor of vertebrates. Later, a third round genome duplication occurred in the teleost fishes. As a prototype member of DEAD-box RNA helicases, the function of p68 helicase in development has been well investigated in human, however, limited information is available regarding the regulatory function of this gene in the development of teleosts. In this study, being an important farmed fish in North China, Japanese flounder (Paralichthys olivaceus) was used as model fish to investigate the role of p68 gene in teleost development. Two p68 genes were first identified from Japanese flounder. Molecular characterization of them was performed by analyzing the exon-intron boundaries. Then, we confirmed that such two teleost p68 genes originated from teleost-specific genome duplication through phylogenetic and synteny analyses. Additionally, comparative analyses of amino acid sequences, variation in selective pressure, and expression profiles of p68 genes revealed probable sub-functionalization fate of teleost p68 genes after the duplication. Therefore, this study supplements the evolutionary properties of teleost p68 gene family and provides the groundwork for further studying the regulatory function of p68 genes in the development of teleosts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app