Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Elderly mouse skeletal muscle fibres have a diminished capacity to upregulate NCAM production in response to denervation.

Biogerontology 2015 December
Sarcopenia is a major contributor to the loss of independence and deteriorating quality of life in elderly individuals, it manifests as a decline in skeletal muscle mass and strength beyond the age of 65. Muscle fibre atrophy is a major contributor to sarcopenia and the most severely atrophic fibres are commonly found in elderly muscles to have permanently lost their motor nerve input. By contrast with elderly fibres, when fibres in young animals lose their motor input they normally mount a response to induce restoration of nerve contact, and this is mediated in part by upregulated expression of the nerve cell adhesion molecule (NCAM). Therefore, skeletal muscles appear to progressively lose their ability to become reinnervated, and here we have investigated whether this decline occurs via loss of the muscle's ability to upregulate NCAM in response to denervation. We performed partial denervation (by peripheral nerve crush) of the extensor digitorum longus muscle of the lower limb in both young and elderly mice. We used immunohistochemistry to compare relative NCAM levels at denervated and control innervated muscle fibres, focused on measurements at neuromuscular junctional, extra-junctional and cytoplasmic locations. Muscle fibres in young animals responded to denervation with significant (32.9%) increases in unpolysialylated NCAM at extra-junctional locations, but with no change in polysialylated NCAM. The same partial denervation protocol applied to elderly animals resulted in no significant change in either polysialylated or unpolysialylated NCAM at junctional, extra-junctional or cytoplasmic locations, therefore muscle fibres in young mice upregulated NCAM in response to denervation but fibres in elderly mice failed to do so. Elevation of NCAM levels is likely to be an important component of the muscle fibre's ability to attract or reattract a neural input, so we conclude that the presence of increasing numbers of long-term denervated fibres in elderly muscles is due, at least in part, to the fibre's declining ability to mount a normal response to loss of motor input.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app