Add like
Add dislike
Add to saved papers

Synthesis of Triptycene-Based Molecular Rotors for Langmuir-Blodgett Monolayers.

We describe syntheses of six triptycene-containing molecular rotors with several single-crystal X-ray diffraction analyses. These rod-shaped molecules carrying an axial rotator are designed to interleave on an aqueous surface into Langmuir-Blodgett (LB) monolayers containing a two-dimensional trigonal array of dipoles rotatable about an axis normal to the surface. Monolayer formation was verified with the simplest of the rotor structures. On an aqueous subphase containing divalent cations (Mg(2+), Ca(2+), Zn(2+), Sr(2+), or Cd(2+)), the LB isotherm yielded an area of 53 ± 3 Å(2)/molecule (monolayer of type A), compatible with the anticipated triangular packing of axes normal to the surface. On pure water, the area is 30 ± 3 Å(2)/molecule, and it is proposed that in this monolayer (type B), the molecular axes are tilted by 40-45° to a structure similar to those observed in single crystals of related triptycenes. After transfer to a gold surface, ellipsometry and PM IRRAS yield tilt angles of 29 ± 4° (monolayers of type A) and 38 ± 4° (type B). A full-scale examination of monolayers from all the rotors on a subphase and after transfer is underway and will be reported separately.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app