Add like
Add dislike
Add to saved papers

Role of Quantum and Surface-State Effects in the Bulk Fermi-Level Position of Ultrathin Bi Films.

Physical Review Letters 2015 September 5
We performed high-resolution photon-energy and polarization-dependent ARPES measurements on ultrathin Bi(111) films [6-180 bilayers (BL), 2.5-70 nm thick] formed on Si(111). In addition to the extensively studied surface states (SSs), the edge of the bulk valence band was clearly measured by using S-polarized light. We found direct evidence that this valence band edge, which forms a hole pocket in the bulk Bi crystal, does not cross the Fermi level for the 180 BL thick film. This is consistent with the predicted semimetal-to-semiconductor transition due to the quantum-size effect [V.B. Sandomirskii, Sov. Phys. JETP 25, 101 (1967)]. However, it became metallic again when the film thickness was decreased (below 30 BL). A plausible explanation for this phenomenon is the modification of the charge neutrality condition due to the size effect of the SSs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app