Add like
Add dislike
Add to saved papers

Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner.

The experimental simulation of conditions falling within "the fetal alcohol spectrum disorder" (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na(+),K(+)-ATPase and Mg(2+)-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na(+),K(+)-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app