Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The crystal structure of JNK from Drosophila melanogaster reveals an evolutionarily conserved topology with that of mammalian JNK proteins.

BMC Structural Biology 2015 September 17
BACKGROUND: The c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, engage in diverse cellular responses to signals produced under normal development and stress conditions. In Drosophila, only one JNK member is present, whereas ten isoforms from three JNK genes (JNK1, 2, and 3) are present in mammalian cells. To date, several mammalian JNK structures have been determined, however, there has been no report of any insect JNK structure.

RESULTS: We report the first structure of JNK from Drosophila melanogaster (DJNK). The crystal structure of the unphosphorylated form of DJNK complexed with adenylyl imidodiphosphate (AMP-PNP) has been solved at 1.79 Å resolution. The fold and topology of DJNK are similar to those of mammalian JNK isoforms, demonstrating their evolutionarily conserved structures and functions. Structural comparisons of DJNK and the closely related mammalian JNKs also allow identification of putative catalytic residues, substrate-binding sites and conformational alterations upon docking interaction with Drosophila scaffold proteins.

CONCLUSIONS: The DJNK structure reveals common features with those of the mammalian JNK isoforms, thereby allowing the mapping of putative catalytic and substrate binding sites. Additionally, structural changes upon peptide binding could be predicted based on the comparison with the closely-related JNK3 structure in complex with pepJIP1. This is the first structure of insect JNK reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of insect JNK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app