JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping.

Journal of Neuroscience 2015 September 17
UNLABELLED: Adaptive behaviors are built on the arbitrary linkage of sensory inputs to actions and goals. Although the sensorimotor and associative frontostriatal circuits are known to mediate arbitrary visuomotor mappings, the underlying corticocortico dynamics remain elusive. Here, we take a novel approach exploiting gamma-band neural activity to study the human cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. Single-trial gamma-power time courses were estimated for all Brodmann areas by combing magnetoencephalographic and MRI data with spectral analysis and beam-forming techniques. Linear correlation and Granger causality analyses were performed to investigate functional connectivity between cortical regions. The performance of visuomotor associations was characterized by an increase in gamma-power and functional connectivity over the sensorimotor and frontoparietal network, in addition to medial prefrontal areas. The superior parietal area played a driving role in the network, exerting Granger causality on the dorsal premotor area. Premotor areas acted as relay from parietal to medial prefrontal cortices, which played a receiving role in the network. Link community analysis further revealed that visuomotor mappings reflect the coordination of multiple subnetworks with strong overlap over motor and frontoparietal areas. We put forward an associative account of the underlying cognitive processes and corticocortical functional connectivity. Overall, our approach and results provide novel perspectives toward a better understanding of how distributed brain activity coordinates adaptive behaviors.

SIGNIFICANCE STATEMENT: In everyday life, most of our behaviors are based on the arbitrary linkage of sensory information to actions and goals, such as stopping at a red traffic light. Despite their automaticity, such behaviors rely on the activity of a large brain network and elusive interareal functional connectivity. We take a novel approach exploiting noninvasive recordings of human brain activity to reveal the cortical networks and corticocortical functional connectivity mediating visuomotor mappings. Parietal areas were found to play a driving role in the network, whereas premotor areas acted as relays from parietal to medial prefrontal cortices, which played a receiving role. Overall, our approach and results provide novel perspectives toward a better understanding of how distributed brain activity coordinates adaptive behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app