JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Persistent change in cardiac fibroblast physiology after transient ACE inhibition.

Transient angiotensin-converting enzyme (ACE) inhibition induces persistent changes that protect against future nitric oxide synthase (NOS) inhibitor-induced cardiac fibrosis and inflammation. Given the role of fibroblasts in mediating these effects, the present study investigates whether prior ACE inhibition produced persistent changes in cardiac fibroblast physiology. Adult male spontaneously hypertensive rats (SHRs) were treated with vehicle (C+L) or the ACE inhibitor, enalapril (E+L) for 2 wk followed by a 2-wk washout period and a subsequent 7-day challenge with the NOS inhibitor N(ω)-nitro-l-arginine methyl ester. A third set of untreated SHRs served as controls. At the end of the study period, cardiac fibroblasts were isolated from control, C+L, and E+L left ventricles to assess proliferation rate, collagen expression, and chemokine release in vitro. After 7 days of NOS inhibition, there were areas of myocardial injury but no significant change in collagen deposition in E+L and C+L hearts in vivo. In vitro, cardiac fibroblasts isolated from C+L but not E+L hearts were hyperproliferative, demonstrated increased collagen type I gene expression, and an elevated secretion of the macrophage-recruiting chemokines monocyte chemoattractant protein-1 and granulocyte macrophage-colony stimulating factor. These findings demonstrate that in vivo N(ω)-nitro-l-arginine methyl ester treatment produces phenotypic changes in fibroblasts that persist in vitro. Moreover, this is the first demonstration that transient ACE inhibition can produce a persistent modification of the cardiac fibroblast phenotype to one that is less inflammatory and fibrogenic. It may be that the cardioprotective effects of ACE inhibition are related in part to beneficial changes in cardiac fibroblast physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app