JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Dissecting the Rev-erbα Cistrome and the Mechanisms Controlling Circadian Transcription in Liver.

Circadian clocks maintain whole-body metabolic homeostasis by coordinating rhythmic gene expression in multiple tissues. Core clock regulators sustain their own oscillation and confer expression rhythmicity on clock-controlled genes (CCGs). Our unbiased examination of enhancer RNA (eRNA) transcription around the clock in mouse liver identified functional enhancers of circadian genes driven by phase-specific transcription factors (TFs). Rev-erbα emerged as a primary driver of circadian enhancers, leading to oscillating gene expression in opposite phases through direct and indirect regulation. Among Rev-erbα target genes were core clock components and metabolic CCGs. Oscillation of clock genes was enforced by direct competition between Rev-erbα and RORα for binding to cognate motifs in the genome, whereas metabolic CCGs were governed by recruitment of the NCoR/HDAC3 complex to enhancers where Rev-erbα is tethered by tissue-specific TFs. The DNA sequence-mediated competition between Rev-erbα and RORα ensures consistent clock control across all tissues. In contrast, the tethered binding mechanism is tissue-specific and thus allows Rev-erbα to dictate an epigenomic rhythm tailored to the specific need of that tissue. Therefore, discrete modes of recruitment allow Rev-erbα to link the clock to cell-specific functions, including metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app