Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Noradrenaline-mediated facilitation of inhibitory synaptic transmission in the dorsal horn of the rat spinal cord involves interlaminar communications.

In the dorsal horn of the spinal cord (DH), noradrenaline (NA) is released by axons originating from the locus coeruleus and induces spinal analgesia, the mechanisms of which are poorly understood. Here, the effects of NA on synaptic transmission in the deep laminae (III-V) of the DH were characterized. It was shown that exogenously applied, as well as endogenously released, NA facilitated inhibitory [γ-aminobutyric acid (GABA)ergic and glycinergic] synaptic transmission in laminae III-IV of the DH by activating α1-, α2- and β-adrenoceptors (ARs). In contrast, NA had no effect on excitatory (glutamatergic) synaptic transmission. Physical interruption of communications between deep and more superficial laminae (by a mechanical transection between laminae IV and V) totally blocked the effects of α2-AR agonists and strongly reduced the effects of α1-AR agonists on inhibitory synaptic transmission in laminae III-IV without directly impairing synaptic release of GABA or glycine from neurons. Short-term pretreatment of intact spinal cord slices with the glial cell metabolism inhibitor fluorocitrate or pharmacological blockade of ionotropic glutamate and ATP receptors mimicked the consequences of a mechanical transection between laminae IV and V. Taken together, the current results indicate that the facilitation of inhibitory synaptic transmission in laminae III-IV of the DH by NA requires functional interlaminar connections between deep and more superficial laminae, and might strongly depend on glia to neuron interactions. These interlaminar connections and glia to neuron interactions could represent interesting targets for analgesic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app