Add like
Add dislike
Add to saved papers

Fluorescence modeling for optimized-binary compressive detection Raman spectroscopy.

Optics Express 2015 September 8
The recently-developed optimized binary compressive detection (OB-CD) strategy has been shown to be capable of using Raman spectral signatures to rapidly classify and quantify liquid samples and to image solid samples. Here we demonstrate that OB-CD can also be used to quantitatively separate Raman and fluorescence features, and thus facilitate Raman-based chemical analyses in the presence of fluorescence background. More specifically, we describe a general strategy for fitting and suppressing fluorescence background using OB-CD filters trained on third-degree Bernstein polynomials. We present results that demonstrate the utility of this strategy by comparing classification and quantitation results obtained from liquids and powdered mixtures, both with and without fluorescence. Our results demonstrate high-speed Raman-based quantitation in the presence of moderate fluorescence. Moreover, we show that this OB-CD based method is effective in suppressing fluorescence of variable shape, as well as fluorescence that changes during the measurement process, as a result of photobleaching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app