Add like
Add dislike
Add to saved papers

Complex Behavior of Caffeine Crystallites on Muscovite Mica Surfaces.

Crystal Growth & Design 2015 September 3
Defined fabrication of organic thin films is highly desired in technological, as well as pharmaceutical, applications since morphology and crystal structure are directly linked to physical, electrical, and optical properties. Within this work, the directed growth of caffeine deposited by hot wall epitaxy (HWE) on muscovite mica is studied. Optical and atomic force microscopy measurements reveal the presence of caffeine needles exhibiting a preferable alignment in the azimuthal directions with respect to the orientation of the defined mica surface. Specular X-ray diffraction and X-ray diffraction pole figure measurements give evidence that the β-polymorphic form of caffeine forms on the mica surface. All results consent that caffeine molecules have an edge-on conformation i.e. minimizing their interaction area with the surface. Furthermore, the azimuthal alignment of the long caffeine needle axis takes place along the [11̅0], [100], and [110] real space directions of mica; needles are observed every 60° azimuthally. While mica has a complex surface structure with mirror planes and lowered oxygen rows, the slightly disturbed 3-fold symmetry dictates the crystal alignment. This is different to previous findings for solution cast caffeine growth on mica. For HWE the needles align solely along the mica main directions whereby solution cast needles show an additional needle splitting due to a different alignment of caffeine with respect to the surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app