JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(-/-) mice.

Neurobiology of Aging 2015 December
Midbrain dopamine (DA) neurons are involved in cognition, control of motor activity, and emotion-related behaviors. Degeneration of DA neurons particularly in the substantia nigra is a hallmark of Parkinson's disease. The homeobox transcription factor, Pitx3, plays a critical role in the development, function, and maintenance of midbrain DA neurons. We found that in young adult Pitx3-null mice, Pitx3(-/-), there was decreased tyrosine hydroxylase staining, indicating a loss of DA neurons particularly in the substantia nigra. In addition, fast-scan cyclic voltammetry and microdialysis assays of DA release indicated that the lack of Pitx3 caused a significant reduction of striatal DA release. Tonic DA release was impaired more significantly than the phasic DA release induced by burst firing of DA neurons. Furthermore, behavioral tests revealed that Pitx3(-/-) mice displayed abnormal motor activities, including impaired motor coordination and decreased locomotion. In summary, these data provide further evidence that Pitx3 is specifically required for DA-related function and, if impaired, Pitx3 could contribute during the pathogenesis of Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app