JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

(Pro)renin Receptor Blockade Ameliorates Cardiac Injury and Remodeling and Improves Function After Myocardial Infarction.

BACKGROUND: The (pro)renin receptor [(P)RR] is implicated in the pathogenesis of cardiovascular disease. We investigated the effects of (P)RR blockade after myocardial infarction (MI) in a mouse coronary-ligation model.

METHODS AND RESULTS: Mice underwent sham control surgeries (n = 8) or induction of MI followed by 28 days' treatment with a vehicle control (n = 8) or (P)RR antagonist (n = 8). Compared with sham control subjects, MI + vehicle mice demonstrated reduced left ventricular (LV) ejection fraction (LVEF: P < .001) and fractional shortening (P < .001), and increased LV end-systolic and -diastolic volumes (LVESV: P < .001; LVEDV: P < .001) 28 days after MI. In addition, MI decreased LV posterior wall and septal diameters (both P < .001), increased heart weight-body weight ratios (P < .05), LV collagen deposition, and cardiomyocyte diameter (both P < .001), and up-regulated collagen 1 (P < .01) and β-myosin heavy chain (β-MHC: P < .05) mRNA. Compared with MI + vehicle mice, (P)RR antagonism after MI reduced infarct size (P < .01), improved LVEF (P < .001), fractional shortening (P < .001), and stroke volume (P < .05), and decreased LVESV (P < .001) and LVEDV (P < .001). (P)RR antagonism also reversed MI-induced transmural thinning (P < .001) and reduced LV fibrosis (P < .01), cardiomyocyte size (P < .001), and ventricular collagen 1 (P < .01), β-MHC (P = .06), transforming growth factor β1 (P < .01), and angiotensin-converting enzyme (P < .05) expression.

CONCLUSIONS: The present study found that (P)RR blockade after MI in mice ameliorates infarct size, cardiac fibrosis/hypertrophy, and cardiac dysfunction and identifies the receptor as a potential therapeutic target in this setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app