Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immuno-chemistry of hydroxyl radical modified GAD-65: A possible role in experimental and human diabetes mellitus.

IUBMB Life 2015 October
The repertoire of known auto-antigens is limited to a very small proportion of all human proteins, and the reason why only some proteins become auto-antigens is unclear. The 65 kDa isoform of the enzyme glutamic acid decarboxylase (GAD-65) is a major auto-antigen in type I diabetes, and in various neurological diseases. Most patients with type I diabetes (70-80%) have auto-antibodies against GAD-65, which often appear years before clinical onset of the autoimmune diabetes. Thus, the aim of the study is to focus on the immunogenicity of GAD65 and its reactive oxygen species (ROS) conformer in STZ-induced diabetic rats and on human diabetic patients. In the present study, GAD-65 was modified by hydroxyl radical following Fenton's reaction. The modifications in the structure of the GAD-65 are supported by UV-vis and fluorescence spectral studies. Immunogenicity of both native and hydroxyl radical modified GAD-65 (ROS-GAD-65) was studied in experimental rabbits and was confirmed by inducing type I diabetes in experimental male albino rats using streptozotocin (45 mg/kg). We found that ROS-GAD-65 was a better immunogen as compared to the native GAD-65. A considerable high binding to ROS-GAD-65 was observed as compared to native GAD-65 in both the serum antibodies from diabetes animal models and as well as in the serum samples of type I diabetes. Hydrogen peroxide under the exposure of UV light produces hydroxyl radical (·OH) which is most potent oxidant, and could cause protein damage (GAD-65) to the extent of generating neo-epitopes on the molecule, thus making it immunogenic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app