Add like
Add dislike
Add to saved papers

Effects of extinction treatments on the reduction of conditioned responding and conditioned hyperarousal in a rabbit model of posttraumatic stress disorder (PTSD).

We have previously characterized a model of posttraumatic stress disorder (PTSD), based on classical conditioning of the rabbit nictitating membrane response (NMR), that focuses on 2 key PTSD-like features: conditioned responses to trauma-associated cues and hyperarousal. In addition to the development of conditioned NMRs (CRs) to a tone conditioned stimulus (CS) associated with a periorbital shock unconditioned stimulus (US), we have observed that rabbits also exhibit a conditioning-specific reflex modification (CRM) of the NMR that manifests as an exaggerated and more complex reflexive NMR to presentations of the US by itself, particularly to intensities that elicited little response prior to conditioning. Previous work has demonstrated that unpaired presentations of the CS and US are successful at extinguishing CRs and CRM simultaneously, even when a significantly weakened version of the US is utilized. In the current study, additional extinction treatments were tested, including continued pairings of the CS with a weakened US and exposure to the training context alone, and these treatments were contrasted with the effects of unpaired extinction with a weakened US and remaining in home cages with no further treatment. Results showed that continued pairings only slightly decreased CRs and CRM, while context exposure had no effect on CRs and marginal effects on reducing CRM. Unpaired extinction was still the most effective treatment for reducing both. Findings are discussed in terms of applications to cognitive-behavioral therapies for treatment of PTSD, such as incorporating mild, innately stressful stimuli into virtual reality therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app