JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in melatonin synthesis parameters after carbon monoxide concentration increase in the cavernous sinus.

Previous studies indicate that the gaseous messenger carbon monoxide (CO) is released from the eye into the ophthalmic venous blood depending on the intensity of sunlight. This study was designed to determine whether the increased concentration of CO in ophthalmic venous blood affects the synthesis of melatonin and therefore, whether CO released from the eye under normal lighting conditions can be a carrier of light intensity information. Thirty six mature male wild boar and pig crossbreeds (n = 36) were studied. We measured the difference in the scotophase melatonin pathway response in terms of mean concentration of increased melatonin levels after 48 hours infusion of autologous blood plasma with an experimentally induced approximately 3-fold increase in the concentration of CO into the ophthalmic venous sinus. We demonstrated in this crossbreed a marked variation in the duration and amplitude of nocturnal melatonin peak in response to increased concentration of CO in ophthalmic venous blood. During the winter this treatment limited the nocturnal melatonin rise. During the summer this same experimental treatment enhanced the nocturnal melatonin rise. Changes in melatonin levels were always associated with parallel changes in AANAT protein levels. This work demonstrates that non-physiological changes in CO concentration in ophthalmic venous blood can have an acute impact on the systemic melatonin level. These results support humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and treatment of winter seasonal affective disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app