JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

EXTL2 and EXTL3 inhibition with siRNAs as a promising substrate reduction therapy for Sanfilippo C syndrome.

Sanfilippo syndrome is a rare lysosomal storage disorder caused by an impaired degradation of heparan sulfate (HS). It presents severe and progressive neurodegeneration and currently there is no effective treatment. Substrate reduction therapy (SRT) may be a useful option for neurological disorders of this kind, and several approaches have been tested to date. Here we use different siRNAs targeting EXTL2 and EXTL3 genes, which are important for HS synthesis, as SRT in Sanfilippo C patients' fibroblasts in order to decrease glycosaminoglycan (GAG) storage inside the lysosomes. The results show a high inhibition of the EXTL gene mRNAs (around 90%), a decrease in GAG synthesis after three days (30-60%) and a decrease in GAG storage after 14 days (up to 24%). Moreover, immunocytochemistry analyses showed a clear reversion of the phenotype after treatment. The in vitro inhibition of HS synthesis genes using siRNAs shown here is a first step in the development of a future therapeutic option for Sanfilippo C syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app